Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 134(5)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227384

RESUMEN

Early-life seizures (ELSs) can cause permanent cognitive deficits and network hyperexcitability, but it is unclear whether ELSs induce persistent changes in specific neuronal populations and whether these changes can be targeted to mitigate network dysfunction. We used the targeted recombination of activated populations (TRAP) approach to genetically label neurons activated by kainate-induced ELSs in immature mice. The ELS-TRAPed neurons were mainly found in hippocampal CA1, remained uniquely susceptible to reactivation by later-life seizures, and displayed sustained enhancement in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated (AMPAR-mediated) excitatory synaptic transmission and inward rectification. ELS-TRAPed neurons, but not non-TRAPed surrounding neurons, exhibited enduring decreases in Gria2 mRNA, responsible for encoding the GluA2 subunit of the AMPARs. This was paralleled by decreased synaptic GluA2 protein expression and heightened phosphorylated GluA2 at Ser880 in dendrites, indicative of GluA2 internalization. Consistent with increased GluA2-lacking AMPARs, ELS-TRAPed neurons showed premature silent synapse depletion, impaired long-term potentiation, and impaired long-term depression. In vivo postseizure treatment with IEM-1460, an inhibitor of GluA2-lacking AMPARs, markedly mitigated ELS-induced changes in TRAPed neurons. These findings show that enduring modifications of AMPARs occur in a subpopulation of ELS-activated neurons, contributing to synaptic dysplasticity and network hyperexcitability, but are reversible with early IEM-1460 intervention.


Asunto(s)
Adamantano/análogos & derivados , Convulsiones , Animales , Ratones , Convulsiones/genética , Neuronas , Hipocampo , Receptores AMPA/genética
2.
Cell Rep ; 42(9): 113057, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37656617

RESUMEN

While synaptic plasticity is considered the basis of learning and memory, modifications of the intrinsic excitability of neurons can amplify the output of neuronal circuits and consequently change behavior. However, the mechanisms that underlie learning-induced changes in intrinsic excitability during memory formation are poorly understood. In the cerebellum, we find that silencing molecular layer interneurons completely abolishes fear memory, revealing their critical role in memory consolidation. The fear conditioning paradigm produces a lasting reduction in hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in these interneurons. This change increases intrinsic membrane excitability and enhances the response to synaptic stimuli. HCN loss is driven by a decrease in endocannabinoid levels via altered cGMP signaling. In contrast, an increase in release of cerebellar endocannabinoids during memory consolidation abolishes HCN plasticity. Thus, activity in cerebellar interneurons drives fear memory formation via a learning-specific increase in intrinsic excitability, and this process requires the loss of endocannabinoid-HCN signaling.


Asunto(s)
Consolidación de la Memoria , Endocannabinoides , Interneuronas/fisiología , Cerebelo , Miedo/fisiología , Plasticidad Neuronal/fisiología
4.
Nat Commun ; 11(1): 6407, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33335094

RESUMEN

Endocannabinoids retrogradely regulate synaptic transmission and their abundance is controlled by the fine balance between endocannabinoid synthesis and degradation. While the common assumption is that "on-demand" release determines endocannabinoid signaling, their rapid degradation is expected to control the temporal profile of endocannabinoid action and may impact neuronal signaling. Here we show that memory formation through fear conditioning selectively accelerates the degradation of endocannabinoids in the cerebellum. Learning induced a lasting increase in GABA release and this was responsible for driving the change in endocannabinoid degradation. Conversely, Gq-DREADD activation of cerebellar Purkinje cells enhanced endocannabinoid signaling and impaired memory consolidation. Our findings identify a previously unappreciated reciprocal interaction between GABA and the endocannabinoid system in which GABA signaling accelerates endocannabinoid degradation, and triggers a form of learning-induced metaplasticity.


Asunto(s)
Endocannabinoides/metabolismo , Consolidación de la Memoria/fisiología , Transmisión Sináptica/fisiología , Animales , Cerebelo/metabolismo , Condicionamiento Clásico , Miedo , Masculino , Ratones Endogámicos C57BL , Monoacilglicerol Lipasas/metabolismo , Células de Purkinje/metabolismo , Células de Renshaw/metabolismo , Ácido gamma-Aminobutírico/metabolismo
5.
Mol Psychiatry ; 25(9): 2000-2016, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-30967682

RESUMEN

Postsynaptic trafficking plays a key role in regulating synapse structure and function. While spiny excitatory synapses can be stable throughout adult life, their morphology and function is impaired in Alzheimer's disease (AD). However, little is known about how AD risk genes impact synaptic function. Here we used structured superresolution illumination microscopy (SIM) to study the late-onset Alzheimer's disease (LOAD) risk factor BIN1, and show that this protein is abundant in postsynaptic compartments, including spines. While postsynaptic Bin1 shows colocalization with clathrin, a major endocytic protein, it also colocalizes with the small GTPases Rab11 and Arf6, components of the exocytic pathway. Bin1 participates in protein complexes with Arf6 and GluA1, and manipulations of Bin1 lead to changes in spine morphology, AMPA receptor surface expression and trafficking, and AMPA receptor-mediated synaptic transmission. Our data provide new insights into the mesoscale architecture of postsynaptic trafficking compartments and their regulation by a major LOAD risk factor.


Asunto(s)
Enfermedad de Alzheimer , Proteínas Adaptadoras Transductoras de Señales/genética , Adulto , Humanos , Proteínas Nucleares , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica , Proteínas Supresoras de Tumor
6.
J Neurosci ; 37(46): 11127-11139, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29030434

RESUMEN

Appropriate excitatory/inhibitory (E/I) balance is essential for normal cortical function and is altered in some psychiatric disorders, including autism spectrum disorders (ASDs). Cell-autonomous molecular mechanisms that control the balance of excitatory and inhibitory synapse function remain poorly understood; no proteins that regulate excitatory and inhibitory synapse strength in a coordinated reciprocal manner have been identified. Using super-resolution imaging, electrophysiology, and molecular manipulations, we show that cadherin-10, encoded by CDH10 within the ASD risk locus 5p14.1, maintains both excitatory and inhibitory synaptic scaffold structure in cultured cortical neurons from rats of both sexes. Cadherin-10 localizes to both excitatory and inhibitory synapses in neocortex, where it is organized into nanoscale puncta that influence the size of their associated PSDs. Knockdown of cadherin-10 reduces excitatory but increases inhibitory synapse size and strength, altering the E/I ratio in cortical neurons. Furthermore, cadherin-10 exhibits differential participation in complexes with PSD-95 and gephyrin, which may underlie its role in maintaining the E/I ratio. Our data provide a new mechanism whereby a protein encoded by a common ASD risk factor controls E/I ratios by regulating excitatory and inhibitory synapses in opposing directions.SIGNIFICANCE STATEMENT The correct balance between excitatory/inhibitory (E/I) is crucial for normal brain function and is altered in psychiatric disorders such as autism. However, the molecular mechanisms that underlie this balance remain elusive. To address this, we studied cadherin-10, an adhesion protein that is genetically linked to autism and understudied at the cellular level. Using a combination of advanced microscopy techniques and electrophysiology, we show that cadherin-10 forms nanoscale puncta at excitatory and inhibitory synapses, maintains excitatory and inhibitory synaptic structure, and is essential for maintaining the correct balance between excitation and inhibition in neuronal dendrites. These findings reveal a new mechanism by which E/I balance is controlled in neurons and may bear relevance to synaptic dysfunction in autism.


Asunto(s)
Cadherinas/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Inhibidores/fisiología , Sinapsis/metabolismo , Animales , Células Cultivadas , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Unión Proteica/fisiología , Ratas , Ratas Sprague-Dawley
7.
Proc Natl Acad Sci U S A ; 112(19): 6176-81, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25918374

RESUMEN

Central glutamatergic synapses and the molecular pathways that control them are emerging as common substrates in the pathogenesis of mental disorders. Genetic variation in the contactin associated protein-like 2 (CNTNAP2) gene, including copy number variations, exon deletions, truncations, single nucleotide variants, and polymorphisms have been associated with intellectual disability, epilepsy, schizophrenia, language disorders, and autism. CNTNAP2, encoded by Cntnap2, is required for dendritic spine development and its absence causes disease-related phenotypes in mice. However, the mechanisms whereby CNTNAP2 regulates glutamatergic synapses are not known, and cellular phenotypes have not been investigated in Cntnap2 knockout neurons. Here we show that CNTNAP2 is present in dendritic spines, as well as axons and soma. Structured illumination superresolution microscopy reveals closer proximity to excitatory, rather than inhibitory synaptic markers. CNTNAP2 does not promote the formation of synapses and cultured neurons from Cntnap2 knockout mice do not show early defects in axon and dendrite outgrowth, suggesting that CNTNAP2 is not required at this stage. However, mature neurons from knockout mice show reduced spine density and levels of GluA1 subunits of AMPA receptors in spines. Unexpectedly, knockout neurons show large cytoplasmic aggregates of GluA1. Here we characterize, for the first time to our knowledge, synaptic phenotypes in Cntnap2 knockout neurons and reveal a novel role for CNTNAP2 in GluA1 trafficking. Taken together, our findings provide insight into the biological roles of CNTNAP2 and into the pathogenesis of CNTNAP2-associated neuropsychiatric disorders.


Asunto(s)
Citoplasma/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Receptores de Glutamato/metabolismo , Sinapsis/patología , Animales , Axones/fisiología , Células Cultivadas , Técnicas de Cocultivo , Regulación del Desarrollo de la Expresión Génica , Genotipo , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Microscopía Confocal , Microscopía Fluorescente , Enfermedades del Sistema Nervioso/metabolismo , Neuronas/metabolismo , Fenotipo , Receptores AMPA/metabolismo , Esquizofrenia/metabolismo , Sinapsis/metabolismo
8.
Neuron ; 84(2): 399-415, 2014 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-25374361

RESUMEN

Recent evidence implicates glutamatergic synapses as key pathogenic sites in psychiatric disorders. Common and rare variants in the ANK3 gene, encoding ankyrin-G, have been associated with bipolar disorder, schizophrenia, and autism. Here we demonstrate that ankyrin-G is integral to AMPAR-mediated synaptic transmission and maintenance of spine morphology. Using superresolution microscopy we find that ankyrin-G forms distinct nanodomain structures within the spine head and neck. At these sites, it modulates mushroom spine structure and function, probably as a perisynaptic scaffold and barrier within the spine neck. Neuronal activity promotes ankyrin-G accumulation in distinct spine subdomains, where it differentially regulates NMDA receptor-dependent plasticity. These data implicate subsynaptic nanodomains containing a major psychiatric risk molecule, ankyrin-G, as having location-specific functions and open directions for basic and translational investigation of psychiatric risk molecules.


Asunto(s)
Ancirinas/química , Ancirinas/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Animales , Mutación/genética , Ratas , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Factores de Riesgo
9.
Hippocampus ; 23(4): 313-22, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23280785

RESUMEN

According to the theory of multiple memory systems, specific brain regions interact to determine how the locations of goals are learned when rodents navigate a spatial environment. A number of factors influence the type of strategy used by rodents to remember the location of a given goal in space, including the biological sex of the learner. We recently found that prior to puberty male rats preferred a striatum-dependent stimulus-response strategy over a hippocampus-dependent place strategy when solving a dual-solution task, while age-matched females showed no strategy preference. Because the cholinergic system has been implicated in learning strategy and is known to be sexually dimorphic prior to puberty, we explored the relationship between learning strategy and muscarinic receptor binding in specific brain regions of prepubertal males and female rats. We confirmed our previous finding that at 28 days of age a significantly higher proportion of prepubertal males preferred a stimulus-response learning strategy than a place strategy to solve a dual-solution visible platform water maze task. Equal proportions of prepubertal females preferred stimulus-response or place strategies. Profiles of muscarinic receptor binding as assessed by autoradiography varied according to strategy preference. Regardless of biological sex, prepubertal rats that preferred stimulus-response strategy exhibited lower ratios of muscarinic receptor binding in the hippocampus relative to the dorsolateral striatum compared to rats that preferred place strategy. Importantly, much of the variance in this ratio was related to differences in the ventral hippocampus to a greater extent than the dorsal hippocampus. The ratios of muscarinic receptors in the hippocampus relative to the basolateral amygdala also were lower in rats that preferred stimulus-response strategy over place strategy. Results confirm that learning strategy preference varies with biological sex in prepubertal rats with males biased toward a stimulus-response strategy, and that stimulus-response strategy is associated with lower ratios of muscarinic binding in the hippocampus relative to either the striatum or amygdala.


Asunto(s)
Encéfalo/metabolismo , Receptores Muscarínicos/metabolismo , Caracteres Sexuales , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Encéfalo/anatomía & histología , Encéfalo/efectos de los fármacos , Femenino , Masculino , Aprendizaje por Laberinto , Antagonistas Muscarínicos/farmacocinética , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Quinuclidinil Bencilato/farmacocinética , Ensayo de Unión Radioligante , Ratas , Tritio/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...